home *** CD-ROM | disk | FTP | other *** search
/ Interactive Algebra & Tri…f Guided Study Companion / Interactive Algebra and Trigonometry - A Self-Guided Study Companion.iso / tutor / chap_3 / 3-2-1.tut < prev    next >
Unknown  |  1996-05-22  |  4.0 KB

open in: MacOS 8.1     |     Win98     |     DOS

view JSON data     |     view as text


This file was not able to be converted.
This format is not currently supported by dexvert.

ConfidenceProgramDetectionMatch TypeSupport
1% dexvert Eclipse Tutorial (other/eclipseTutorial) ext Unsupported
1% dexvert JuggleKrazy Tutorial (other/juggleKrazyTutorial) ext Unsupported
100% file data default
100% gt2 Kopftext: 'TUTOR 06' default (weak)



hex view
+--------+-------------------------+-------------------------+--------+--------+
|00000000| 54 55 54 4f 52 20 30 36 | 7f 0f 00 00 85 00 00 00 |TUTOR 06|........|
|00000010| 53 65 63 74 69 6f 6e 20 | 33 2e 32 20 20 50 6f 6c |Section |3.2 Pol|
|00000020| 79 6e 6f 6d 69 61 6c 20 | 46 75 6e 63 74 69 6f 6e |ynomial |Function|
|00000030| 73 20 6f 66 20 48 69 67 | 68 65 72 20 44 65 67 72 |s of Hig|her Degr|
|00000040| 65 65 0d 0b 00 46 6f 72 | 20 6d 6f 72 65 20 70 72 |ee...For| more pr|
|00000050| 61 63 74 69 63 65 3a 0d | 0a 00 0d 0a 00 20 20 20 |actice:.|..... |
|00000060| 20 20 10 33 2d 32 2d 33 | 0e 78 33 2d 32 0e 45 78 | .3-2-3|.x3-2.Ex|
|00000070| 65 72 63 69 73 65 73 0f | 0d 0a 00 20 20 20 20 20 |ercises.|... |
|00000080| 10 33 2d 32 2d 32 0e 65 | 33 2d 32 0e 47 75 69 64 |.3-2-2.e|3-2.Guid|
|00000090| 65 64 20 45 78 65 72 63 | 69 73 65 73 0f 0d 0a 00 |ed Exerc|ises....|
|000000a0| 0d 0a 00 54 6f 70 69 63 | 73 20 66 6f 72 20 65 78 |...Topic|s for ex|
|000000b0| 70 6c 6f 72 61 74 69 6f | 6e 3a 0d 0a 00 0d 0a 00 |ploratio|n:......|
|000000c0| 20 20 20 20 20 0e 73 33 | 2d 32 2d 31 0e 47 72 61 | .s3|-2-1.Gra|
|000000d0| 70 68 73 20 6f 66 20 50 | 6f 6c 79 6e 6f 6d 69 61 |phs of P|olynomia|
|000000e0| 6c 20 46 75 6e 63 74 69 | 6f 6e 73 0f 0d 0a 00 20 |l Functi|ons.... |
|000000f0| 20 20 20 20 0e 73 33 2d | 32 2d 32 0e 4c 65 61 64 | .s3-|2-2.Lead|
|00000100| 69 6e 67 20 43 6f 65 66 | 66 69 63 69 65 6e 74 20 |ing Coef|ficient |
|00000110| 54 65 73 74 0f 0d 0a 00 | 20 20 20 20 20 0e 73 33 |Test....| .s3|
|00000120| 2d 32 2d 33 0e 5a 65 72 | 6f 73 20 6f 66 20 50 6f |-2-3.Zer|os of Po|
|00000130| 6c 79 6e 6f 6d 69 61 6c | 20 46 75 6e 63 74 69 6f |lynomial| Functio|
|00000140| 6e 73 0f 0d 0a 00 20 20 | 20 20 20 0e 73 33 2d 32 |ns.... | .s3-2|
|00000150| 2d 34 0e 49 6e 74 65 72 | 6d 65 64 69 61 74 65 20 |-4.Inter|mediate |
|00000160| 56 61 6c 75 65 20 54 68 | 65 6f 72 65 6d 0f 0d 0a |Value Th|eorem...|
|00000170| 00 53 65 63 74 69 6f 6e | 20 33 2e 32 20 20 50 6f |.Section| 3.2 Po|
|00000180| 6c 79 6e 6f 6d 69 61 6c | 20 46 75 6e 63 74 69 6f |lynomial| Functio|
|00000190| 6e 73 20 6f 66 20 48 69 | 67 68 65 72 20 44 65 67 |ns of Hi|gher Deg|
|000001a0| 72 65 65 0d 0b 00 53 6f | 20 66 61 72 2c 20 77 65 |ree...So| far, we|
|000001b0| 20 68 61 76 65 20 6c 65 | 61 72 6e 65 64 20 68 6f | have le|arned ho|
|000001c0| 77 20 74 6f 20 73 6b 65 | 74 63 68 20 74 68 65 20 |w to ske|tch the |
|000001d0| 67 72 61 70 68 73 20 6f | 66 20 70 6f 6c 79 6e 6f |graphs o|f polyno|
|000001e0| 6d 69 61 6c 73 20 66 75 | 6e 63 74 69 6f 6e 73 20 |mials fu|nctions |
|000001f0| 6f 66 20 0d 0a 00 64 65 | 67 72 65 65 73 20 30 2c |of ...de|grees 0,|
|00000200| 20 31 2c 20 6f 72 20 32 | 2e 20 20 50 6f 6c 79 6e | 1, or 2|. Polyn|
|00000210| 6f 6d 69 61 6c 20 66 75 | 6e 63 74 69 6f 6e 73 20 |omial fu|nctions |
|00000220| 6f 66 20 64 65 67 72 65 | 65 20 30 20 61 72 65 20 |of degre|e 0 are |
|00000230| 63 61 6c 6c 65 64 20 63 | 6f 6e 73 74 61 6e 74 20 |called c|onstant |
|00000240| 0d 0a 00 66 75 6e 63 74 | 69 6f 6e 73 20 61 6e 64 |...funct|ions and|
|00000250| 20 61 72 65 20 72 65 70 | 72 65 73 65 6e 74 65 64 | are rep|resented|
|00000260| 20 62 79 20 61 20 68 6f | 72 69 7a 6f 6e 74 61 6c | by a ho|rizontal|
|00000270| 20 6c 69 6e 65 2e 20 20 | 54 68 65 20 73 6b 65 74 | line. |The sket|
|00000280| 63 68 20 6f 66 20 61 20 | 70 6f 6c 79 2d 0d 0a 00 |ch of a |poly-...|
|00000290| 6e 6f 6d 69 61 6c 20 6f | 66 20 64 65 67 72 65 65 |nomial o|f degree|
|000002a0| 20 31 20 69 73 20 61 20 | 6c 69 6e 65 20 61 6e 64 | 1 is a |line and|
|000002b0| 20 74 68 65 20 66 75 6e | 63 74 69 6f 6e 20 69 73 | the fun|ction is|
|000002c0| 20 63 61 6c 6c 65 64 20 | 61 20 6c 69 6e 65 61 72 | called |a linear|
|000002d0| 20 66 75 6e 63 74 69 6f | 6e 2e 20 20 0d 0a 00 51 | functio|n. ...Q|
|000002e0| 75 61 64 72 61 74 69 63 | 20 66 75 6e 63 74 69 6f |uadratic| functio|
|000002f0| 6e 73 20 61 72 65 20 70 | 6f 6c 79 6e 6f 6d 69 61 |ns are p|olynomia|
|00000300| 6c 20 66 75 6e 63 74 69 | 6f 6e 73 20 6f 66 20 64 |l functi|ons of d|
|00000310| 65 67 72 65 65 20 32 20 | 61 6e 64 20 74 68 65 69 |egree 2 |and thei|
|00000320| 72 20 67 72 61 70 68 73 | 20 61 72 65 20 0d 0a 00 |r graphs| are ...|
|00000330| 63 61 6c 6c 65 64 20 70 | 61 72 61 62 6f 6c 61 73 |called p|arabolas|
|00000340| 2e 0d 0a 00 0d 0a 00 59 | 6f 75 20 6d 61 79 20 68 |.......Y|ou may h|
|00000350| 61 76 65 20 6e 6f 74 69 | 63 65 64 20 73 6f 6d 65 |ave noti|ced some|
|00000360| 20 63 6f 6d 6d 6f 6e 20 | 66 65 61 74 75 72 65 73 | common |features|
|00000370| 20 6f 66 20 61 6c 6c 20 | 6f 66 20 74 68 65 73 65 | of all |of these|
|00000380| 20 67 72 61 70 68 73 2e | 20 20 46 69 72 73 74 2c | graphs.| First,|
|00000390| 20 0d 0a 00 74 68 65 72 | 65 20 61 72 65 20 6e 6f | ...ther|e are no|
|000003a0| 20 62 72 65 61 6b 73 20 | 28 67 61 70 73 20 6f 72 | breaks |(gaps or|
|000003b0| 20 6d 69 73 73 69 6e 67 | 20 70 6f 69 6e 74 73 29 | missing| points)|
|000003c0| 20 69 6e 20 74 68 65 20 | 67 72 61 70 68 73 2e 20 | in the |graphs. |
|000003d0| 20 46 75 72 74 68 65 72 | 6d 6f 72 65 2c 20 74 68 | Further|more, th|
|000003e0| 65 20 0d 0a 00 67 72 61 | 70 68 73 20 61 72 65 20 |e ...gra|phs are |
|000003f0| 61 6c 6c 20 73 6d 6f 6f | 74 68 20 63 75 72 76 65 |all smoo|th curve|
|00000400| 73 20 6f 72 20 6c 69 6e | 65 73 2c 20 77 69 74 68 |s or lin|es, with|
|00000410| 20 6e 6f 20 73 68 61 72 | 70 20 70 6f 69 6e 74 73 | no shar|p points|
|00000420| 20 6f 72 20 73 75 64 64 | 65 6e 20 74 75 72 6e 73 | or sudd|en turns|
|00000430| 2e 20 20 0d 0a 00 49 6e | 20 66 61 63 74 2c 20 74 |. ...In| fact, t|
|00000440| 68 65 73 65 20 66 65 61 | 74 75 72 65 73 20 61 72 |hese fea|tures ar|
|00000450| 65 20 61 6c 73 6f 20 74 | 72 75 65 20 6f 66 20 74 |e also t|rue of t|
|00000460| 68 65 20 12 31 67 72 61 | 70 68 73 20 6f 66 20 70 |he .1gra|phs of p|
|00000470| 6f 6c 79 6e 6f 6d 69 61 | 6c 20 66 75 6e 63 74 69 |olynomia|l functi|
|00000480| 6f 6e 73 20 0d 0a 00 6f | 66 20 68 69 67 68 65 72 |ons ...o|f higher|
|00000490| 20 64 65 67 72 65 65 12 | 30 2e 20 20 57 65 20 73 | degree.|0. We s|
|000004a0| 61 79 20 74 68 61 74 20 | 70 6f 6c 79 6e 6f 6d 69 |ay that |polynomi|
|000004b0| 61 6c 20 66 75 6e 63 74 | 69 6f 6e 73 20 61 72 65 |al funct|ions are|
|000004c0| 20 12 31 63 6f 6e 74 69 | 6e 75 6f 75 73 12 30 20 | .1conti|nuous.0 |
|000004d0| 61 6e 64 20 0d 0a 00 12 | 31 73 6d 6f 6f 74 68 12 |and ....|1smooth.|
|000004e0| 30 2e 0d 0a 00 53 65 63 | 74 69 6f 6e 20 33 2e 32 |0....Sec|tion 3.2|
|000004f0| 20 20 50 6f 6c 79 6e 6f | 6d 69 61 6c 20 46 75 6e | Polyno|mial Fun|
|00000500| 63 74 69 6f 6e 73 20 6f | 66 20 48 69 67 68 65 72 |ctions o|f Higher|
|00000510| 20 44 65 67 72 65 65 0d | 0b 00 41 73 20 11 33 78 | Degree.|..As .3x|
|00000520| 20 11 31 6d 6f 76 65 73 | 20 77 69 74 68 6f 75 74 | .1moves| without|
|00000530| 20 62 6f 75 6e 64 20 74 | 6f 20 74 68 65 20 6c 65 | bound t|o the le|
|00000540| 66 74 20 28 11 33 78 20 | 11 34 32 33 20 11 31 2d |ft (.3x |.423 .1-|
|00000550| 11 34 38 11 31 29 20 6f | 72 20 74 6f 20 74 68 65 |.48.1) o|r to the|
|00000560| 20 72 69 67 68 74 20 28 | 11 33 78 20 11 34 32 33 | right (|.3x .423|
|00000570| 20 38 11 31 29 2c 20 74 | 68 65 20 0d 0a 00 20 20 | 8.1), t|he ... |
|00000580| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000590| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000005a0| 20 20 20 20 20 20 20 20 | 20 11 32 6e 0d 0b 00 11 | | .2n....|
|000005b0| 31 67 72 61 70 68 20 6f | 66 20 74 68 65 20 70 6f |1graph o|f the po|
|000005c0| 6c 79 6e 6f 6d 69 61 6c | 20 66 75 6e 63 74 69 6f |lynomial| functio|
|000005d0| 6e 20 11 33 66 28 78 29 | 20 3d 20 61 20 78 20 20 |n .3f(x)| = a x |
|000005e0| 2b 20 11 34 2a 2a 2a 20 | 11 33 2b 20 61 20 78 20 |+ .4*** |.3+ a x |
|000005f0| 2b 20 61 20 20 11 31 65 | 76 65 6e 74 75 61 6c 6c |+ a .1e|ventuall|
|00000600| 79 20 0d 0b 00 20 20 20 | 20 20 20 20 20 20 20 20 |y ... | |
|00000610| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000620| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 11 32 | | .2|
|00000630| 6e 20 20 20 20 20 20 20 | 20 20 20 20 20 31 20 20 |n | 1 |
|00000640| 20 20 20 30 0d 0a 00 11 | 31 72 69 73 65 73 20 6f | 0....|1rises o|
|00000650| 72 20 66 61 6c 6c 73 20 | 61 73 20 67 6f 76 65 72 |r falls |as gover|
|00000660| 6e 65 64 20 62 79 20 69 | 74 73 20 6c 65 61 64 69 |ned by i|ts leadi|
|00000670| 6e 67 20 63 6f 65 66 66 | 69 63 69 65 6e 74 2c 20 |ng coeff|icient, |
|00000680| 61 73 20 69 6e 64 69 63 | 61 74 65 64 20 69 6e 20 |as indic|ated in |
|00000690| 74 68 65 0d 0a 00 0d 0b | 00 12 31 4c 65 61 64 69 |the.....|..1Leadi|
|000006a0| 6e 67 20 43 6f 65 66 66 | 69 63 69 65 6e 74 20 54 |ng Coeff|icient T|
|000006b0| 65 73 74 12 30 2e 0d 0a | 00 0d 0b 00 31 2e 20 20 |est.0...|....1. |
|000006c0| 57 68 65 6e 20 11 33 6e | 20 11 31 69 73 20 6f 64 |When .3n| .1is od|
|000006d0| 64 3a 0d 0a 00 0d 0b 00 | 20 20 20 20 49 66 20 11 |d:......| If .|
|000006e0| 33 61 20 20 11 31 3e 20 | 30 2c 20 74 68 65 20 67 |3a .1> |0, the g|
|000006f0| 72 61 70 68 20 66 61 6c | 6c 73 20 74 6f 20 74 68 |raph fal|ls to th|
|00000700| 65 20 6c 65 66 74 20 61 | 6e 64 20 72 69 73 65 73 |e left a|nd rises|
|00000710| 20 74 6f 20 74 68 65 20 | 72 69 67 68 74 2e 0d 0b | to the |right...|
|00000720| 00 20 20 20 20 20 20 20 | 20 11 32 6e 0d 0a 00 0d |. | .2n....|
|00000730| 0b 00 20 20 20 20 11 31 | 49 66 20 11 33 61 20 20 |.. .1|If .3a |
|00000740| 11 31 3c 20 30 2c 20 74 | 68 65 20 67 72 61 70 68 |.1< 0, t|he graph|
|00000750| 20 72 69 73 65 73 20 74 | 6f 20 74 68 65 20 6c 65 | rises t|o the le|
|00000760| 66 74 20 61 6e 64 20 66 | 61 6c 6c 73 20 74 6f 20 |ft and f|alls to |
|00000770| 74 68 65 20 72 69 67 68 | 74 2e 0d 0b 00 20 20 20 |the righ|t.... |
|00000780| 20 20 20 20 20 11 32 6e | 0d 0a 00 0d 0b 00 11 31 | .2n|.......1|
|00000790| 32 2e 20 20 57 68 65 6e | 20 11 33 6e 20 11 31 69 |2. When| .3n .1i|
|000007a0| 73 20 65 76 65 6e 3a 0d | 0a 00 0d 0b 00 20 20 20 |s even:.|..... |
|000007b0| 20 49 66 20 11 33 61 20 | 20 11 31 3e 20 30 2c 20 | If .3a | .1> 0, |
|000007c0| 74 68 65 20 67 72 61 70 | 68 20 72 69 73 65 73 20 |the grap|h rises |
|000007d0| 74 6f 20 74 68 65 20 6c | 65 66 74 20 61 6e 64 20 |to the l|eft and |
|000007e0| 72 69 67 68 74 2e 0d 0b | 00 20 20 20 20 20 20 20 |right...|. |
|000007f0| 20 11 32 6e 0d 0a 00 0d | 0b 00 20 20 20 20 11 31 | .2n....|.. .1|
|00000800| 49 66 20 11 33 61 20 20 | 11 31 3c 20 30 2c 20 74 |If .3a |.1< 0, t|
|00000810| 68 65 20 67 72 61 70 68 | 20 66 61 6c 6c 73 20 74 |he graph| falls t|
|00000820| 6f 20 74 68 65 20 6c 65 | 66 74 20 61 6e 64 20 72 |o the le|ft and r|
|00000830| 69 67 68 74 2e 0d 0b 00 | 20 20 20 20 20 20 20 20 |ight....| |
|00000840| 11 32 6e 0d 0a 00 0d 0b | 00 11 31 52 65 66 65 72 |.2n.....|..1Refer|
|00000850| 20 74 6f 20 70 61 67 65 | 20 32 37 30 20 6f 66 20 | to page| 270 of |
|00000860| 79 6f 75 72 20 74 65 78 | 74 20 66 6f 72 20 61 20 |your tex|t for a |
|00000870| 67 72 61 70 68 69 63 61 | 6c 20 69 6e 74 65 72 70 |graphica|l interp|
|00000880| 72 65 74 61 74 69 6f 6e | 20 6f 66 20 74 68 69 73 |retation| of this|
|00000890| 20 72 75 6c 65 2e 0d 0a | 00 53 65 63 74 69 6f 6e | rule...|.Section|
|000008a0| 20 33 2e 32 20 20 50 6f | 6c 79 6e 6f 6d 69 61 6c | 3.2 Po|lynomial|
|000008b0| 20 46 75 6e 63 74 69 6f | 6e 73 20 6f 66 20 48 69 | Functio|ns of Hi|
|000008c0| 67 68 65 72 20 44 65 67 | 72 65 65 0d 0b 00 54 68 |gher Deg|ree...Th|
|000008d0| 65 20 66 6f 6c 6c 6f 77 | 69 6e 67 20 73 74 61 74 |e follow|ing stat|
|000008e0| 65 6d 65 6e 74 73 20 61 | 62 6f 75 74 20 74 68 65 |ements a|bout the|
|000008f0| 20 70 6f 6c 79 6e 6f 6d | 69 61 6c 20 66 75 6e 63 | polynom|ial func|
|00000900| 74 69 6f 6e 20 11 33 66 | 20 11 31 6f 66 20 64 65 |tion .3f| .1of de|
|00000910| 67 72 65 65 20 11 33 6e | 20 11 31 63 61 6e 20 62 |gree .3n| .1can b|
|00000920| 65 20 0d 0a 00 73 68 6f | 77 6e 20 74 6f 20 62 65 |e ...sho|wn to be|
|00000930| 20 74 72 75 65 2e 0d 0a | 00 0d 0b 00 31 2e 20 54 | true...|....1. T|
|00000940| 68 65 20 67 72 61 70 68 | 20 6f 66 20 11 33 66 20 |he graph| of .3f |
|00000950| 11 31 68 61 73 2c 20 61 | 74 20 6d 6f 73 74 2c 20 |.1has, a|t most, |
|00000960| 11 33 6e 20 11 31 2d 20 | 31 20 74 75 72 6e 69 6e |.3n .1- |1 turnin|
|00000970| 67 20 70 6f 69 6e 74 73 | 20 28 70 6f 69 6e 74 73 |g points| (points|
|00000980| 20 61 74 20 77 68 69 63 | 68 20 74 68 65 20 0d 0a | at whic|h the ..|
|00000990| 00 20 20 20 67 72 61 70 | 68 20 63 68 61 6e 67 65 |. grap|h change|
|000009a0| 73 20 66 72 6f 6d 20 69 | 6e 63 72 65 61 73 69 6e |s from i|ncreasin|
|000009b0| 67 20 74 6f 20 64 65 63 | 72 65 61 73 69 6e 67 20 |g to dec|reasing |
|000009c0| 6f 72 20 76 69 63 65 20 | 76 65 72 73 61 29 2e 0d |or vice |versa)..|
|000009d0| 0a 00 0d 0b 00 32 2e 20 | 11 33 66 20 11 31 68 61 |.....2. |.3f .1ha|
|000009e0| 73 2c 20 61 74 20 6d 6f | 73 74 2c 20 11 33 6e 20 |s, at mo|st, .3n |
|000009f0| 11 31 72 65 61 6c 20 7a | 65 72 6f 73 2e 0d 0a 00 |.1real z|eros....|
|00000a00| 0d 0a 00 57 68 65 6e 20 | 77 65 20 73 74 75 64 79 |...When |we study|
|00000a10| 20 74 68 65 20 12 31 72 | 65 61 6c 20 7a 65 72 6f | the .1r|eal zero|
|00000a20| 73 20 6f 66 20 70 6f 6c | 79 6e 6f 6d 69 61 6c 20 |s of pol|ynomial |
|00000a30| 66 75 6e 63 74 69 6f 6e | 73 12 30 2c 20 77 65 20 |function|s.0, we |
|00000a40| 66 72 65 71 75 65 6e 74 | 6c 79 20 6d 61 6b 65 20 |frequent|ly make |
|00000a50| 75 73 65 20 0d 0a 00 6f | 66 20 74 68 65 20 65 71 |use ...o|f the eq|
|00000a60| 75 69 76 61 6c 65 6e 63 | 65 20 6f 66 20 74 68 65 |uivalenc|e of the|
|00000a70| 20 66 6f 6c 6c 6f 77 69 | 6e 67 20 73 74 61 74 65 | followi|ng state|
|00000a80| 6d 65 6e 74 73 2e 20 20 | 28 11 33 66 20 11 31 69 |ments. |(.3f .1i|
|00000a90| 73 20 61 20 70 6f 6c 79 | 6e 6f 6d 69 61 6c 20 66 |s a poly|nomial f|
|00000aa0| 75 6e 63 74 69 6f 6e 20 | 0d 0a 00 6f 66 20 11 33 |unction |...of .3|
|00000ab0| 78 20 11 31 61 6e 64 20 | 11 33 61 20 11 31 69 73 |x .1and |.3a .1is|
|00000ac0| 20 61 20 72 65 61 6c 20 | 6e 75 6d 62 65 72 2e 29 | a real |number.)|
|00000ad0| 0d 0a 00 0d 0b 00 31 2e | 20 20 11 33 78 20 3d 20 |......1.| .3x = |
|00000ae0| 61 20 11 31 69 73 20 61 | 20 11 33 7a 65 72 6f 20 |a .1is a| .3zero |
|00000af0| 11 31 6f 66 20 74 68 65 | 20 66 75 6e 63 74 69 6f |.1of the| functio|
|00000b00| 6e 20 11 33 66 11 31 2e | 0d 0a 00 0d 0b 00 32 2e |n .3f.1.|......2.|
|00000b10| 20 20 11 33 78 20 3d 20 | 61 20 11 31 69 73 20 61 | .3x = |a .1is a|
|00000b20| 20 11 33 73 6f 6c 75 74 | 69 6f 6e 20 11 31 6f 66 | .3solut|ion .1of|
|00000b30| 20 74 68 65 20 70 6f 6c | 79 6e 6f 6d 69 61 6c 20 | the pol|ynomial |
|00000b40| 65 71 75 61 74 69 6f 6e | 20 11 33 66 28 78 29 20 |equation| .3f(x) |
|00000b50| 3d 20 30 2e 0d 0a 00 0d | 0b 00 11 31 33 2e 20 20 |= 0.....|...13. |
|00000b60| 11 33 28 78 20 2d 20 61 | 29 20 11 31 69 73 20 61 |.3(x - a|) .1is a|
|00000b70| 20 11 33 66 61 63 74 6f | 72 20 11 31 6f 66 20 74 | .3facto|r .1of t|
|00000b80| 68 65 20 70 6f 6c 79 6e | 6f 6d 69 61 6c 20 11 33 |he polyn|omial .3|
|00000b90| 66 28 78 29 11 31 2e 0d | 0a 00 0d 0b 00 34 2e 20 |f(x).1..|.....4. |
|00000ba0| 20 11 33 28 61 2c 20 30 | 29 20 11 31 69 73 20 61 | .3(a, 0|) .1is a|
|00000bb0| 6e 20 11 33 78 2d 69 6e | 74 65 72 63 65 70 74 20 |n .3x-in|tercept |
|00000bc0| 11 31 6f 66 20 74 68 65 | 20 67 72 61 70 68 20 6f |.1of the| graph o|
|00000bd0| 66 20 74 68 65 20 66 75 | 6e 63 74 69 6f 6e 20 11 |f the fu|nction .|
|00000be0| 33 66 11 31 2e 0d 0a 00 | 0d 0b 00 53 61 79 69 6e |3f.1....|...Sayin|
|00000bf0| 67 20 74 68 61 74 20 74 | 68 65 73 65 20 73 74 61 |g that t|hese sta|
|00000c00| 74 65 6d 65 6e 74 73 20 | 61 72 65 20 65 71 75 69 |tements |are equi|
|00000c10| 76 61 6c 65 6e 74 20 6d | 65 61 6e 73 20 74 68 61 |valent m|eans tha|
|00000c20| 74 20 69 66 20 61 6e 79 | 20 6f 6e 65 20 73 74 61 |t if any| one sta|
|00000c30| 74 65 6d 65 6e 74 20 0d | 0a 00 69 73 20 74 72 75 |tement .|..is tru|
|00000c40| 65 2c 20 74 68 65 6e 20 | 11 33 61 6c 6c 20 11 31 |e, then |.3all .1|
|00000c50| 6f 66 20 74 68 65 20 73 | 74 61 74 65 6d 65 6e 74 |of the s|tatement|
|00000c60| 73 20 61 72 65 20 74 72 | 75 65 2e 0d 0a 00 53 65 |s are tr|ue....Se|
|00000c70| 63 74 69 6f 6e 20 33 2e | 32 20 20 50 6f 6c 79 6e |ction 3.|2 Polyn|
|00000c80| 6f 6d 69 61 6c 20 46 75 | 6e 63 74 69 6f 6e 73 20 |omial Fu|nctions |
|00000c90| 6f 66 20 48 69 67 68 65 | 72 20 44 65 67 72 65 65 |of Highe|r Degree|
|00000ca0| 0d 0b 00 54 68 65 20 12 | 31 49 6e 74 65 72 6d 65 |...The .|1Interme|
|00000cb0| 64 69 61 74 65 20 56 61 | 6c 75 65 20 54 68 65 6f |diate Va|lue Theo|
|00000cc0| 72 65 6d 12 30 20 73 74 | 61 74 65 73 20 74 68 61 |rem.0 st|ates tha|
|00000cd0| 74 20 69 66 20 11 33 66 | 20 11 31 69 73 20 61 20 |t if .3f| .1is a |
|00000ce0| 70 6f 6c 79 6e 6f 6d 69 | 61 6c 20 66 75 6e 63 74 |polynomi|al funct|
|00000cf0| 69 6f 6e 20 73 75 63 68 | 20 0d 0a 00 74 68 61 74 |ion such| ...that|
|00000d00| 20 11 33 61 20 3c 20 62 | 20 11 31 61 6e 64 20 11 | .3a < b| .1and .|
|00000d10| 33 66 28 61 29 20 11 34 | 3d 20 11 33 66 28 62 29 |3f(a) .4|= .3f(b)|
|00000d20| 11 31 2c 20 74 68 65 6e | 20 11 33 66 20 11 31 74 |.1, then| .3f .1t|
|00000d30| 61 6b 65 73 20 6f 6e 20 | 65 76 65 72 79 20 76 61 |akes on |every va|
|00000d40| 6c 75 65 20 62 65 74 77 | 65 65 6e 20 11 33 66 28 |lue betw|een .3f(|
|00000d50| 61 29 20 11 31 61 6e 64 | 20 11 33 66 28 62 29 20 |a) .1and| .3f(b) |
|00000d60| 0d 0a 00 11 31 69 6e 20 | 74 68 65 20 69 6e 74 65 |....1in |the inte|
|00000d70| 72 76 61 6c 20 11 33 5b | 61 2c 20 62 5d 11 31 2e |rval .3[|a, b].1.|
|00000d80| 0d 0a 00 0d 0a 00 59 6f | 75 20 6d 61 79 20 61 73 |......Yo|u may as|
|00000d90| 6b 20 77 68 79 20 74 68 | 69 73 20 74 68 65 6f 72 |k why th|is theor|
|00000da0| 65 6d 20 69 73 20 69 6d | 70 6f 72 74 61 6e 74 20 |em is im|portant |
|00000db0| 74 6f 20 75 73 20 61 74 | 20 74 68 69 73 20 70 6f |to us at| this po|
|00000dc0| 69 6e 74 2e 20 20 54 68 | 65 20 61 6e 73 77 65 72 |int. Th|e answer|
|00000dd0| 20 69 73 20 0d 0a 00 74 | 68 61 74 20 69 74 20 63 | is ...t|hat it c|
|00000de0| 61 6e 20 62 65 20 75 73 | 65 64 20 74 6f 20 72 65 |an be us|ed to re|
|00000df0| 76 65 61 6c 20 6d 6f 72 | 65 20 69 6e 66 6f 72 6d |veal mor|e inform|
|00000e00| 61 74 69 6f 6e 20 61 62 | 6f 75 74 20 74 68 65 20 |ation ab|out the |
|00000e10| 7a 65 72 6f 73 20 6f 66 | 20 61 20 70 6f 6c 79 2d |zeros of| a poly-|
|00000e20| 0d 0a 00 6e 6f 6d 69 61 | 6c 20 66 75 6e 63 74 69 |...nomia|l functi|
|00000e30| 6f 6e 2e 20 20 11 33 49 | 11 31 66 20 11 33 61 20 |on. .3I|.1f .3a |
|00000e40| 11 31 3c 20 11 33 62 11 | 31 2c 20 61 6e 64 20 74 |.1< .3b.|1, and t|
|00000e50| 68 65 20 73 69 67 6e 73 | 20 6f 66 20 11 33 66 28 |he signs| of .3f(|
|00000e60| 61 29 20 11 31 61 6e 64 | 20 11 33 66 28 62 29 20 |a) .1and| .3f(b) |
|00000e70| 11 31 61 72 65 20 6e 6f | 74 20 74 68 65 20 73 61 |.1are no|t the sa|
|00000e80| 6d 65 2c 20 0d 0a 00 74 | 68 65 6e 20 77 65 20 6b |me, ...t|hen we k|
|00000e90| 6e 6f 77 20 74 68 61 74 | 20 11 33 66 20 11 31 74 |now that| .3f .1t|
|00000ea0| 61 6b 65 73 20 6f 6e 20 | 65 76 65 72 79 20 76 61 |akes on |every va|
|00000eb0| 6c 75 65 20 62 65 74 77 | 65 65 6e 20 11 33 66 28 |lue betw|een .3f(|
|00000ec0| 61 29 20 11 31 61 6e 64 | 20 11 33 66 28 62 29 2e |a) .1and| .3f(b).|
|00000ed0| 20 20 11 31 53 70 65 63 | 69 66 69 63 61 6c 6c 79 | .1Spec|ifically|
|00000ee0| 2c 20 0d 0a 00 11 33 66 | 28 78 29 20 11 31 3d 20 |, ....3f|(x) .1= |
|00000ef0| 30 20 66 6f 72 20 73 6f | 6d 65 20 11 33 78 20 11 |0 for so|me .3x .|
|00000f00| 31 73 75 63 68 20 74 68 | 61 74 20 11 33 61 20 11 |1such th|at .3a .|
|00000f10| 31 3c 20 11 33 78 20 11 | 31 3c 20 11 33 62 11 31 |1< .3x .|1< .3b.1|
|00000f20| 2e 20 20 54 68 69 73 20 | 73 65 72 76 65 73 20 74 |. This |serves t|
|00000f30| 6f 20 22 6e 61 72 72 6f | 77 20 64 6f 77 6e 22 20 |o "narro|w down" |
|00000f40| 74 68 65 20 0d 0a 00 72 | 65 67 69 6f 6e 20 69 6e |the ...r|egion in|
|00000f50| 20 77 68 69 63 68 20 77 | 65 20 6e 65 65 64 20 74 | which w|e need t|
|00000f60| 6f 20 73 65 61 72 63 68 | 20 66 6f 72 20 7a 65 72 |o search| for zer|
|00000f70| 6f 73 20 6f 66 20 11 33 | 66 11 31 2e 0d 0a 00 42 |os of .3|f.1....B|
|00000f80| 00 00 00 2f 01 00 00 4d | 32 00 00 10 00 00 00 00 |.../...M|2.......|
|00000f90| 00 00 00 73 33 2d 32 00 | a3 01 00 00 42 03 00 00 |...s3-2.|....B...|
|00000fa0| 4d 32 00 00 71 01 00 00 | 00 00 00 00 73 33 2d 32 |M2..q...|....s3-2|
|00000fb0| 2d 31 00 17 05 00 00 82 | 03 00 00 4d 32 00 00 e5 |-1......|...M2...|
|00000fc0| 04 00 00 00 00 00 00 73 | 33 2d 32 2d 32 00 cb 08 |.......s|3-2-2...|
|00000fd0| 00 00 a3 03 00 00 4d 32 | 00 00 99 08 00 00 00 00 |......M2|........|
|00000fe0| 00 00 73 33 2d 32 2d 33 | 00 a0 0c 00 00 df 02 00 |..s3-2-3|........|
|00000ff0| 00 4d 32 00 00 6e 0c 00 | 00 00 00 00 00 73 33 2d |.M2..n..|.....s3-|
|00001000| 32 2d 34 00 | |2-4. | |
+--------+-------------------------+-------------------------+--------+--------+